Sub-local constraint-based learning of Bayesian networks using a joint dependence criterion

نویسندگان

  • Rami Mahdi
  • Jason G. Mezey
چکیده

Constraint-based learning of Bayesian networks (BN) from limited data can lead to multiple testing problems when recovering dense areas of the skeleton and to conflicting results in the orientation of edges. In this paper, we present a new constraint-based algorithm, light mutual min (LMM) for improved accuracy of BN learning from small sample data. LMM improves the assessment of candidate edges by using a ranking criterion that considers conditional independence on neighboring variables at both sides of an edge simultaneously. The algorithm also employs an adaptive relaxation of constraints that, selectively, allows some nodes not to condition on some neighbors. This relaxation aims at reducing the incorrect rejection of true edges connecting high degree nodes due to multiple testing. LMM additionally incorporates a new criterion for ranking v-structures that is used to recover the completed partially directed acyclic graph (CPDAG) and to resolve conflicting v-structures, a common problem in small sample constraint-based learning. Using simulated data, each of these components of LMM is shown to significantly improve network inference compared to commonly applied methods when learning from limited data, including more accurate recovery of skeletons and CPDAGs compared to the PC, MaxMin, and MaxMin hill climbing algorithms. A proof of asymptotic correctness is also provided for LMM for recovering the correct skeleton and CPDAG.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sub - Local Constraints Based Learning of Bayesian Networks Using A Joint Dependence Criterion ( Supplementary Material )

In this section, we consider some of the characteristics of partial correlations between directly dependent variables when conditioning on a large set of true neighbors of either variable. This material is complementary to the discussion of Section 5 (main paper). The considered characteristics are summarized in Conjecture 1. Here, we only provide a proof for three special cases (problems 1-3 b...

متن کامل

A Surface Water Evaporation Estimation Model Using Bayesian Belief Networks with an Application to the Persian Gulf

Evaporation phenomena is a effective climate component on water resources management and has special importance in agriculture. In this paper, Bayesian belief networks (BBNs) as a non-linear modeling technique provide an evaporation estimation  method under uncertainty. As a case study, we estimated the surface water evaporation of the Persian Gulf and worked with a dataset of observations ...

متن کامل

A Surface Water Evaporation Estimation Model Using Bayesian Belief Networks with an Application to the Persian Gulf

Evaporation phenomena is a effective climate component on water resources management and has special importance in agriculture. In this paper, Bayesian belief networks (BBNs) as a non-linear modeling technique provide an evaporation estimation  method under uncertainty. As a case study, we estimated the surface water evaporation of the Persian Gulf and worked with a dataset of observations ...

متن کامل

 Structure Learning in Bayesian Networks Using Asexual Reproduction Optimization

A new structure learning approach for Bayesian networks (BNs) based on asexual reproduction optimization (ARO) is proposed in this letter. ARO can be essentially considered as an evolutionary based algorithm that mathematically models the budding mechanism of asexual reproduction. In ARO, a parent produces a bud through a reproduction operator; thereafter the parent and its bud compete to survi...

متن کامل

DisTriB: Distributed Trust Management Model Based on Gossip Learning and Bayesian Networks in Collaborative Computing Systems

The interactions among peers in Peer-to-Peer systems as a distributed collaborative system are based on asynchronous and unreliable communications. Trust is an essential and facilitating component in these interactions specially in such uncertain environments. Various attacks are possible due to large-scale nature and openness of these systems that affects the trust. Peers has not enough inform...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of Machine Learning Research

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2013